1. User Guide

1.1. Introduction

Apache Karaf Decanter is monitoring solution running in Apache Karaf.

It’s composed in three parts:

  • Collectors are responsible of harvesting monitoring data. Decanter provides collectors to harvest different kind of data. We have two kinds of collectors:

    • Event Driven Collectors automatically react to events and send the event data to the Decanter appenders.

    • Polled Collectors are periodically called by the Decanter Scheduler. They harvest data and send it to the Decanter appenders

  • Appenders receive the data from the collectors and are responsible to store the data into a given backend. Decanter provides appenders depending of the backend storage that you want to use.

  • SLA is a special kind of appender. It receives all harvested data and checks on it. If a check fails, an alert event is created and sent to alerters. Decanter provides alerters depending of the kind of notification that you want.

Apache Karaf Decanter provides Karaf features for each collector, appender, SLA alerter.

The first thing to do is to add the Decanter features repository in Karaf:

karaf@root()> feature:repo-add mvn:org.apache.karaf.decanter/apache-karaf-decanter/1.1.0/xml/features

Or

karaf@root()> feature:repo-add decanter 1.1.0

Now, you have to install the collectors, appenders, and eventually SLA alerters feature to match your need.

For convenience the decanter feature installs a quick "ready to go" set of components:

  • elasticsearch

  • kibana

  • the elasticsearch appender

  • the JMX and log collectors

1.2. Collectors

Decanter collectors harvest the monitoring data, and send this data to the Decanter appenders.

Two kinds of collector are available:

  • Event Driven Collectors react to events and "broadcast" the data to the appenders.

  • Polled Collectors are periodically executed by the Decanter Scheduler. When executed, the collectors harvest the data and send to the appenders.

1.2.1. Log

The Decanter Log Collector is an event driven collector. It automatically reacts when a log occurs, and send the log details (level, logger name, message, etc) to the appenders.

The decanter-collector-log feature installs the log collector:

karaf@root()> feature:install decanter-collector-log

The log collector doesn’t need any configuration, the installation of the decanter-collector-log feature is enough.

Note

The Decanter log collector is using osgi:DecanterLogCollectorAppender appender. In order to work, your Apache Karaf Pax Logging configuration should contain this appender.

The default Apache Karaf etc/org.ops4j.pax.logging.cfg configuration file is already fine:

log4j.rootLogger = DEBUG, out, osgi:*

If you want, you can explicitly specify the DecanterLogCollectorAppender appender:

log4j.rootLogger = DEBUG, out, osgi:DecanterLogCollectorAppender, osgi:VmLogAppender

1.2.2. CXF Logging feature integration

The CXF message logging nicely integrates with Decanter. Simply add the org.apache.cxf.ext.logging.LoggingFeature to your service.

This will automatically log the messages from all clients and endpoints to slf4j. All meta data can be found in the MDC attributes. The message logging can be switched on/off per service using the org.ops4j.pax.logging.cfg.

When using with Decanter make sure you enable the log collector to actually process the message logs.

1.2.3. Log Socket

The Decanter Log Socket Collector is an event driven collector. It creates a socket, waiting for incoming event. The expected events are log4j LoggingEvent. The log4j LoggingEvent is transformed as a Map containing the log details (level, logger name, message, …​). This Map is sent to the appenders.

The collector allows you to remotely use Decanter. For instance, you can have an application running on a different platform (spring-boot, application servers, …​). This application can use a log4j socket appender that send the logging events to the Decanter log socket collector.

The decanter-collector-log-socket feature install the log socket collector:

karaf@root()> feature:install decanter-collector-log-socket

This feature installs the collector and a default etc/org.apache.karaf.decanter.collector.log.socket.cfg configuration file containing:

#
# Decanter Log/Log4j Socket collector configuration
#

#port=4560
#workers=10
  • the port property defines the port number where the collector is bound and listen for incoming logging event. Default is 4560.

  • the workers properties defines the number of threads (workers) which can deal with multiple clients in the same time.

1.2.4. File

The Decanter File Collector is an event driven collector. It automatically reacts when new lines are appended into a file (especially a log file). It acts like the tail Unix command. Basically, it’s an alternative to the log collector. The log collector reacts for local Karaf log messages, whereas the file collector can react to any files, included log file from other system than Karaf. It means that you can monitor and send collected data for any system (even not Java base, or whatever).

The file collector deals with file rotation, file not found.

The decanter-collector-file feature installs the file collector:

karaf@root()> feature:install decanter-collector-file

Now, you have to create a configuration file for each file that you want to monitor. In the etc folder, you have to create a file with the following format name etc/org.apache.karaf.decanter.collector.file-ID.cfg where ID is an ID of your choice.

This file contains:

type=my
path=/path/to/file
any=value
  • type is an ID (mandatory) that allows you to easily identify the monitored file

  • path is the location of the file that you want to monitore

  • all other values (like any) will be part of the collected data. It means that you can add your own custom data, and easily create queries bases on this data.

For instance, instead of the log collector, you can create the following etc/org.apache.karaf.decanter.collector.file-karaf.cfg file collector configuration file:

type=karaf-log-file
path=/path/to/karaf/data/log/karaf.log
my=stuff

The file collector will tail on karaf.log file, and send any new line in this log file as collected data.

1.2.5. EventAdmin

The Decanter EventAdmin Collector is an event-driven collector, listening for all internal events happening in the Apache Karaf Container.

Note

It’s the perfect way to audit all actions performed on resources (features, bundles, configurations, …​) by users (via local shell console, SSH, or JMX).

We recommend to use this collector to implement users and actions auditing.

The decanter-collector-eventadmin feature installs the eventadmin collector:

karaf@root()> feature:install decanter-collector-eventadmin

By default, the eventadmin collector is listening for all OSGi framework and Karaf internal events.

You can specify additional events to trap by providing a ‘etc/org.apache.karaf.decanter.collector.eventadmin-my.cfg’ configuration file, containing the EventAdmin topics you want to listen:

event.topics=my/*
Note

By default, the events contain timestamp and subject. You can disable this by modifying etc/org.apache.felix.eventadmin.impl.EventAdmin configuration file:

org.apache.felix.eventadmin.AddTimestamp=true
org.apache.felix.eventadmin.AddSubject=true

1.2.6. JMX

The Decanter JMX Collector is a polled collector, executed periodically by the Decanter Scheduler.

The JMX collector connects to a JMX MBeanServer (local or remote), and retrieves all attributes of each available MBeans. The JMX metrics (attribute values) are send to the appenders.

The decanter-collector-jmx feature installs the JMX collector, and a default configuration file:

karaf@root()> feature:install decanter-collector-jmx

This feature brings a etc/org.apache.karaf.decanter.collector.jmx-local.cfg configuration file containing:

#
# Decanter Local JMX collector configuration
#

# Name/type of the JMX collection
type=jmx-local

# URL of the JMX MBeanServer.
# local keyword means the local platform MBeanServer or you can specify to full JMX URL
# like service:jmx:rmi:///jndi/rmi://hostname:port/karaf-instance
url=local

# Username to connect to the JMX MBeanServer
#username=karaf

# Password to connect to the JMX MBeanServer
#password=karaf

# Object name filter to use. Instead of harvesting all MBeans, you can select only
# some MBeans matching the object name filter
#object.name=org.apache.camel:context=*,type=routes,name=*

# Several object names can also be specified.
# What matters is that the property names begin with "object.name".
#object.name.system=java.lang:*
#object.name.karaf=org.apache.karaf:type=http,name=*
#object.name.3=org.apache.activemq:*

This file harvests the data of the local MBeanServer:

  • the type property is a name (of your choice) allowing you to easily identify the harvested data

  • the url property is the MBeanServer to connect. "local" is reserved keyword to specify the local MBeanServer. Instead of "local", you can use the JMX service URL. For instance, for Karaf version 3.0.0, 3.0.1, 3.0.2, and 3.0.3, as the local MBeanServer is secured, you can specify service:jmx:rmi:///jndi/rmi://localhost:1099/karaf-root. You can also polled any remote MBean server (Karaf based or not) providing the service URL.

  • the username property contains the username to connect to the MBean server. It’s only required if the MBean server is secured.

  • the password property contains the password to connect to the MBean server. It’s only required if the MBean server is secured.

  • the object.name property is optional. If this property is not specified, the collector will retrieve the attributes of all MBeans. You can filter to consider only some MBeans. This property contains the ObjectName filter to retrieve the attributes only to some MBeans. Several object names can be listed, provided the property prefix is object.name..

  • any other values will be part of the collected data. It means that you can add your own property if you want to add additional data, and create queries based on this data.

You can retrieve multiple MBean servers. For that, you just create a new configuration file using the file name format etc/org.apache.karaf.decanter.collector.jmx-[ANYNAME].cfg.

1.2.7. ActiveMQ (JMX)

The ActiveMQ JMX collector is just a special configuration of the JMX collector.

The decanter-collector-activemq feature installs the default JMX collector, with the specific ActiveMQ JMX configuration:

karaf@root()> feature:install decanter-collector-jmx-activemq

This feature installs the same collector as the decanter-collector-jmx, but also add the etc/org.apache.karaf.decanter.collector.jmx-activemq.cfg configuration file.

This file contains:

#
# Decanter Local ActiveMQ JMX collector configuration
#

# Name/type of the JMX collection
type=jmx-activemq

# URL of the JMX MBeanServer.
# local keyword means the local platform MBeanServer or you can specify to full JMX URL
# like service:jmx:rmi:///jndi/rmi://hostname:port/karaf-instance
url=local

# Username to connect to the JMX MBeanServer
#username=karaf

# Password to connect to the JMX MBeanServer
#password=karaf

# Object name filter to use. Instead of harvesting all MBeans, you can select only
# some MBeans matching the object name filter
object.name=org.apache.activemq:*

This configuration actually contains a filter to retrieve only the ActiveMQ JMX MBeans.

1.2.8. Camel (JMX)

The Camel JMX collector is just a special configuration of the JMX collector.

The decanter-collector-jmx-camel feature installs the default JMX collector, with the specific Camel JMX configuration:

karaf@root()> feature:install decanter-collector-jmx-camel

This feature installs the same collector as the decanter-collector-jmx, but also add the etc/org.apache.karaf.decanter.collector.jmx-camel.cfg configuration file.

This file contains:

#
# Decanter Local Camel JMX collector configuration
#

# Name/type of the JMX collection
type=jmx-camel

# URL of the JMX MBeanServer.
# local keyword means the local platform MBeanServer or you can specify to full JMX URL
# like service:jmx:rmi:///jndi/rmi://hostname:port/karaf-instance
url=local

# Username to connect to the JMX MBeanServer
#username=karaf

# Password to connect to the JMX MBeanServer
#password=karaf

# Object name filter to use. Instead of harvesting all MBeans, you can select only
# some MBeans matching the object name filter
object.name=org.apache.camel:context=*,type=routes,name=*

This configuration actually contains a filter to retrieve only the Camel Routes JMX MBeans.

1.2.9. Camel Tracer & Notifier

Decanter provides a Camel Tracer Handler that you can set on a Camel Tracer. It also provides a Camel Event Notifier.

Camel Tracer

If you enable the tracer on a Camel route, all tracer events (exchanges on each step of the route) are send to the appenders.

The decanter-collector-camel feature provides the Camel Tracer Handler:

karaf@root()> feature:install decanter-collector-camel

Now, you can use the Decanter Camel Tracer Handler in a tracer that you can use in routes.

For instance, the following route definition shows how to enable tracer on a route, and use the Decanter Tracer Handler in the Camel Tracer:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

    <reference id="eventAdmin" interface="org.osgi.service.event.EventAdmin"/>

    <bean id="traceHandler" class="org.apache.karaf.decanter.collector.camel.DecanterTraceEventHandler">
        <property name="eventAdmin" ref="eventAdmin"/>
    </bean>

    <bean id="tracer" class="org.apache.camel.processor.interceptor.Tracer">
        <property name="traceHandler" ref="traceHandler"/>
        <property name="enabled" value="true"/>
        <property name="traceOutExchanges" value="true"/>
        <property name="logLevel" value="OFF"/>
    </bean>

    <camelContext trace="true" xmlns="http://camel.apache.org/schema/blueprint">
        <route id="test">
            <from uri="timer:fire?period=10000"/>
            <setBody><constant>Hello World</constant></setBody>
            <to uri="log:test"/>
        </route>
    </camelContext>

</blueprint>

You can extend the Decanter event with any property using a custom DecanterCamelEventExtender:

public interface DecanterCamelEventExtender {

    void extend(Map<String, Object> decanterData, Exchange camelExchange);

}

You can inject your extender using setExtender(myExtender) on the DecanterTraceEventHandler. Decanter will automatically call your extender to populate extra properties.

Camel Event Notifier

Decanter also provides DecanterEventNotifier implementing a Camel event notifier: http://camel.apache.org/eventnotifier-to-log-details-about-all-sent-exchanges.html

It’s very similar to the Decanter Camel Tracer. You can control the camel contexts and routes to which you want to trap event.

1.2.10. System

The system collector is a polled collector (periodically executed by the Decanter Scheduler).

This collector executes operating system commands (or scripts) and send the execution output to the appenders.

The decanter-collector-system feature installs the system collector:

karaf@root()> feature:install decanter-collector-system

This feature installs a default etc/org.apache.karaf.decanter.collector.system.cfg configuration file containing:

#
# Decanter OperationSystem Collector configuration
#

# This collector executes system commands, retrieve the exec output/err
# sent to the appenders
#
# The format is command.key=command_to_execute
# where command is a reserved keyword used to identify a command property
# for instance:
#
# command.df=df -h
# command.free=free
#
# You can also create a script containing command like:
#
#   df -k / | awk -F " |%" '/dev/{print $8}'
#
# This script will get the available space on the / filesystem for instance.
# and call the script:
#
# command.df=/bin/script
#
# Another example of script to get the temperature:
#
#   sensors|grep temp1|awk '{print $2}'|cut -b2,3,4,5
#

You can add the commands that you want to execute using the format:

command.name=system_command

The collector will execute each command described in this file, and send the execution output to the appenders.

For instance, if you want to periodically send the free space available on the / filesystem, you can add:

command.df=df -k / | awk -F " |%" '/dev/{print $8}'

1.2.11. Network socket

The Decanter network socket collector listens for incoming messages coming from a remote network socket collector.

The decanter-collector-socket feature installs the network socket collector:

karaf@root()> feature:install decanter-collector-socket

This feature installs a default etc/org.apache.karaf.decanter.collector.socket.cfg configuration file containing:

# Decanter Socket Collector

# Port number on which to listen
#port=34343

# Number of worker threads to deal with
#workers=10
  • the port property contains the port number where the network socket collector is listening

  • the workers property contains the number of worker thread the socket collector is using for connection

1.2.12. JMS

The Decanter JMS collector consumes the data from a JMS queue or topic. It’s a way to aggregate collected data coming from remote and several machines.

The decanter-collector-jms feature installs the JMS collector:

karaf@root()> feature:install decanter-collector-jms

This feature also installs a default etc/org.apache.karaf.decanter.collector.jms.cfg configuration file containing:

######################################
# Decanter JMS Collector Configuration
######################################

# Name of the JMS connection factory
connection.factory.name=jms/decanter

# Name of the destination
destination.name=decanter

# Type of the destination (queue or topic)
destination.type=queue

# Connection username
# username=

# Connection password
# password=
  • the connection.factory.name is the name of the ConnectionFactory OSGi service to use

  • the destination.name is the name of the queue or topic where to consume messages from the JMS broker

  • the destination.type is the type of the destination (queue or topic)

  • the username and password properties are the credentials to use with a secured connection factory

1.2.13. MQTT

The Decanter MQTT collector receives collected messages from a MQTT broker. It’s a way to aggregate collected data coming from remote and several machines.

The decanter-collector-mqtt feature installs the MQTT collector:

karaf@root()> feature:install decanter-collector-mqtt

This feature also installs a default etc/org.apache.karaf.decanter.collector.mqtt.cfg configuration file containing:

#######################################
# Decanter MQTT Collector Configuration
#######################################

# URI of the MQTT broker
server.uri=tcp://localhost:61616

# MQTT Client ID
client.id=decanter

# MQTT topic name
topic=decanter
  • the server.uri is the location of the MQTT broker

  • the client.id is the Decanter MQTT client ID

  • the topic is the MQTT topic pattern where to receive the messages

1.2.14. Kafka

The Decanter Kafka collector receives collected messages from a Kafka broker. It’s a way to aggregate collected data coming from remote and several machines.

The decanter-collector-kafka feature installs the Kafka collector:

karaf@root()> feature:install decanter-collector-kafka

This feature also installs a default etc/org.apache.karaf.decanter.collector.kafka.cfg configuration file containing:

###############################
# Decanter Kafka Configuration
###############################

# A list of host/port pairs to use for establishing the initial connection to the Kafka cluster
#bootstrap.servers=localhost:9092

# An id string to identify the group where the consumer belongs to
#group.id=decanter

# Enable auto commit of consumed messages
#enable.auto.commit=true

# Auto commit interval (in ms) triggering the commit
#auto.commit.interval.ms=1000

# Timeout on the consumer session
#session.timeout.ms=30000

# Serializer class for key that implements the Serializer interface
#key.serializer=org.apache.kafka.common.serialization.StringSerializer

# Serializer class for value that implements the Serializer interface.
#value.serializer=org.apache.kafka.common.serialization.StringSerializer

# Name of the topic
#topic=decanter

# Security (SSL)
#security.protocol=SSL

# SSL truststore location (Kafka broker) and password
#ssl.truststore.location=${karaf.etc}/keystores/keystore.jks
#ssl.truststore.password=karaf

# SSL keystore (if client authentication is required)
#ssl.keystore.location=${karaf.etc}/keystores/clientstore.jks
#ssl.keystore.password=karaf
#ssl.key.password=karaf

# (Optional) SSL provider (default uses the JVM one)
#ssl.provider=

# (Optional) SSL Cipher suites
#ssl.cipher.suites=

# (Optional) SSL Protocols enabled (default is TLSv1.2,TLSv1.1,TLSv1)
#ssl.enabled.protocols=TLSv1.2,TLSv1.1,TLSv1

# (Optional) SSL Truststore type (default is JKS)
#ssl.truststore.type=JKS

# (Optional) SSL Keystore type (default is JKS)
#ssl.keystore.type=JKS

# Security (SASL)
# For SASL, you have to configure Java System property as explained in http://kafka.apache.org/documentation.html#security_ssl

The configuration is similar to the Decanter Kafka appender. Please, see Kafka collector for details.

1.2.15. Rest Servlet

The Decanter Rest Servlet collector registers a servlet on the OSGi HTTP service (by default on /decanter/collect).

It listens for incoming collected messages on this servlet.

The decanter-collector-rest-servlet feature installs the collector:

karaf@root()> feature:install decanter-collector-rest-servlet

1.3. Appenders

Decanter appenders receive the data from the collectors, and store the data into a storage backend.

1.3.1. Log

The Decanter Log Appender creates a log message for each event received from the collectors.

The decanter-appender-log feature installs the log appender:

karaf@root()> feature:install decanter-appender-log

The log appender doesn’t require any configuration.

1.3.2. Elasticsearch & Kibana

Decanter provides three appenders for Elasticsearch:

  • decanter-appender-elasticsearch-rest (recommanded) is an appender which directly uses the Elasticsearch HTTP REST API. It’s compliant with any Elasticsearch version (1.x and 2.x).

  • decanter-appender-elasticsearch-native-1.x is an appender which uses the Elasticsearch 1.x Java Client API. It’s compliant only with Elasticsearch 1.x versions.

  • decanter-appender-elasticsearch-native-2.x is an appender which uses the Elasticsearch 2.x Java Client API. It’s compliant only with Elasticsearch 2.x versions.

These appenders store the data (coming from the collectors) into an Elasticsearch node. They transformm the data as a json document, stored into Elasticsearch.

Elasticsearch HTTP REST appender

The Decanter Elasticsearch HTTP REST API appender uses the Elasticsearch REST API. It works with any Elasticsearch version (1.x and 2.x).

The decanter-appender-elasticsearch-rest feature installs this appender:

karaf@root()> feature:install decanter-appender-elasticsearch-rest

This feature installs the appender and the etc/org.apache.karaf.decanter.appender.elasticsearch.rest.cfg configuration file containing:

#########################################################
# Decanter Elasticsearch HTTP REST Appender Configuration
#########################################################

# HTTP address of the elasticsearch node
# NB: the appender uses discovery via elasticsearch nodes API
address=http://localhost:9200

# Basic username and password authentication
# username=user
# password=password

The file contains the Elasticsearch node location:

  • the address is the HTTP URL of the Elasticsearch node. Default is http://localhost:9200.

  • the username is the username used for authentication (optional)

  • the password is the password used for authentication (optional)

Elasticsearch 1.x Native appender

The Elasticsearch 1.x Native appender uses the Elasticsearch 1.x Java Client API. It’s very specific to Elasticsearch 1.x versions, and can’t run with Elasticsearch 2.x.

The decanter-appender-elasticsearch-native-1.x feature installs the elasticsearch appender:

karaf@root()> feature:install decanter-appender-elasticsearch-native-1.x

This feature installs the elasticsearch appender, especially the etc/org.apache.karaf.decanter.appender.elasticsearch.cfg configuration file containing:

################################################
# Decanter Elasticsearch Appender Configuration
################################################

# Hostname of the elasticsearch instance
host=localhost
# Port number of the elasticsearch instance
port=9300
# Name of the elasticsearch cluster
clusterName=elasticsearch

This file contains the elasticsearch instance connection properties:

  • the host property contains the hostname (or IP address) of the Elasticsearch instance

  • the port property contains the port number of the Elasticsearch instance

  • the clusterName property contains the name of the Elasticsearch cluster where to send the data

Elasticsearch 2.x Native appender

The Elasticsearch 2.x Native appender uses the Elasticsearch 2.x Java Client API. It’s very specific to Elasticsearch 2.x versions, and can’t run with Elasticsearch 1.x.

The decanter-appender-elasticsearch-native-2.x feature installs the elasticsearch appender:

karaf@root()> feature:install decanter-appender-elasticsearch-native-2.x

This feature installs the elasticsearch appender, especially the etc/org.apache.karaf.decanter.appender.elasticsearch.cfg configuration file containing:

################################################
# Decanter Elasticsearch Appender Configuration
################################################

# Hostname of the elasticsearch instance
host=localhost
# Port number of the elasticsearch instance
port=9300
# Name of the elasticsearch cluster
clusterName=elasticsearch

This file contains the elasticsearch instance connection properties:

  • the host property contains the hostname (or IP address) of the Elasticsearch instance

  • the port property contains the port number of the Elasticsearch instance

  • the clusterName property contains the name of the Elasticsearch cluster where to send the data

Embedding Decanter Elasticsearch (1.x and 2.x)
Note

For a larger and shared production platform, we recommend to dedicate a Elasticsearch instance on its own JVM. It allows you some specific tuning for elasticsearch. Another acceptable configuration is to set up the Decanter embedded Elasticsearch instance as part (client) of a larger cluster.

The following Decanter Elasticsearch embedded instance setup works perfectly fine for Karaf Decanter monitoring purpose, especially for the current Karaf instance.

For convenience, Decanter provides elasticsearch feature starting an embedded Elasticsearch instance:

karaf@root()> feature:install elasticsearch

Decanter provides versions of this feature, depending of the Elasticsearch version you want to use (1.x or 2.x).

You can see the feature version available:

karaf@root()> feature:version-list elasticsearch

Thanks to this elasticsearch instance, by default, the decanter-appender-elasticsearch* appenders will send the data to this instance.

The feature also installs the etc/elasticsearch.yml configuration file, different depending of the Elasticsearch version.

For Elasticsearch 1.x:

###############################################################################
##################### Elasticsearch Decanter Configuration ####################
###############################################################################

# WARNING: change in this configuration file requires a refresh or restart of
# the elasticsearch bundle

################################### Cluster ###################################

# Cluster name identifies your cluster for auto-discovery. If you're running
# multiple clusters on the same network, make sure you're using unique names.
#
cluster.name: elasticsearch
cluster.routing.schedule: 50ms


#################################### Node #####################################

# Node names are generated dynamically on startup, so you're relieved
# from configuring them manually. You can tie this node to a specific name:
#
node.name: decanter

# Every node can be configured to allow or deny being eligible as the master,
# and to allow or deny to store the data.
#
# Allow this node to be eligible as a master node (enabled by default):
#
#node.master: true
#
# Allow this node to store data (enabled by default):
#
node.data: true

# You can exploit these settings to design advanced cluster topologies.
#
# 1. You want this node to never become a master node, only to hold data.
#    This will be the "workhorse" of your cluster.
#
#node.master: false
#node.data: true
#
# 2. You want this node to only serve as a master: to not store any data and
#    to have free resources. This will be the "coordinator" of your cluster.
#
#node.master: true
#node.data: false
#
# 3. You want this node to be neither master nor data node, but
#    to act as a "search load balancer" (fetching data from nodes,
#    aggregating results, etc.)
#
#node.master: false
#node.data: false

# Use the Cluster Health API [http://localhost:9200/_cluster/health], the
# Node Info API [http://localhost:9200/_nodes] or GUI tools
# such as <http://www.elasticsearch.org/overview/marvel/>,
# <http://github.com/karmi/elasticsearch-paramedic>,
# <http://github.com/lukas-vlcek/bigdesk> and
# <http://mobz.github.com/elasticsearch-head> to inspect the cluster state.

# A node can have generic attributes associated with it, which can later be used
# for customized shard allocation filtering, or allocation awareness. An attribute
# is a simple key value pair, similar to node.key: value, here is an example:
#
#node.rack: rack314

# By default, multiple nodes are allowed to start from the same installation location
# to disable it, set the following:
#node.max_local_storage_nodes: 1


#################################### Index ####################################

# You can set a number of options (such as shard/replica options, mapping
# or analyzer definitions, translog settings, ...) for indices globally,
# in this file.
#
# Note, that it makes more sense to configure index settings specifically for
# a certain index, either when creating it or by using the index templates API.
#
# See <http://elasticsearch.org/guide/en/elasticsearch/reference/current/index-modules.html> and
# <http://elasticsearch.org/guide/en/elasticsearch/reference/current/indices-create-index.html>
# for more information.

# Set the number of shards (splits) of an index (5 by default):
#
#index.number_of_shards: 5

# Set the number of replicas (additional copies) of an index (1 by default):
#
#index.number_of_replicas: 1

# Note, that for development on a local machine, with small indices, it usually
# makes sense to "disable" the distributed features:
#
#index.number_of_shards: 1
#index.number_of_replicas: 0

# These settings directly affect the performance of index and search operations
# in your cluster. Assuming you have enough machines to hold shards and
# replicas, the rule of thumb is:
#
# 1. Having more *shards* enhances the _indexing_ performance and allows to
#    _distribute_ a big index across machines.
# 2. Having more *replicas* enhances the _search_ performance and improves the
#    cluster _availability_.
#
# The "number_of_shards" is a one-time setting for an index.
#
# The "number_of_replicas" can be increased or decreased anytime,
# by using the Index Update Settings API.
#
# Elasticsearch takes care about load balancing, relocating, gathering the
# results from nodes, etc. Experiment with different settings to fine-tune
# your setup.

# Use the Index Status API (<http://localhost:9200/A/_status>) to inspect
# the index status.


#################################### Paths ####################################

# Path to directory containing configuration (this file and logging.yml):
#
#path.conf: /path/to/conf

# Path to directory where to store index data allocated for this node.
#
#path.data: /path/to/data
#
# Can optionally include more than one location, causing data to be striped across
# the locations (a la RAID 0) on a file level, favouring locations with most free
# space on creation. For example:
#
#path.data: /path/to/data1,/path/to/data2
path.data: data

# Path to temporary files:
#
#path.work: /path/to/work

# Path to log files:
#
#path.logs: /path/to/logs

# Path to where plugins are installed:
#
#path.plugins: /path/to/plugins
path.plugins: ${karaf.home}/elasticsearch/plugins

#################################### Plugin ###################################

# If a plugin listed here is not installed for current node, the node will not start.
#
#plugin.mandatory: mapper-attachments,lang-groovy


################################### Memory ####################################

# Elasticsearch performs poorly when JVM starts swapping: you should ensure that
# it _never_ swaps.
#
# Set this property to true to lock the memory:
#
#bootstrap.mlockall: true

# Make sure that the ES_MIN_MEM and ES_MAX_MEM environment variables are set
# to the same value, and that the machine has enough memory to allocate
# for Elasticsearch, leaving enough memory for the operating system itself.
#
# You should also make sure that the Elasticsearch process is allowed to lock
# the memory, eg. by using `ulimit -l unlimited`.


############################## Network And HTTP ###############################

# Elasticsearch, by default, binds itself to the 0.0.0.0 address, and listens
# on port [9200-9300] for HTTP traffic and on port [9300-9400] for node-to-node
# communication. (the range means that if the port is busy, it will automatically
# try the next port).

# Set the bind address specifically (IPv4 or IPv6):
#
#network.bind_host: 192.168.0.1

# Set the address other nodes will use to communicate with this node. If not
# set, it is automatically derived. It must point to an actual IP address.
#
#network.publish_host: 192.168.0.1

# Set both 'bind_host' and 'publish_host':
#
#network.host: 192.168.0.1
network.host: 127.0.0.1

# Set a custom port for the node to node communication (9300 by default):
#
#transport.tcp.port: 9300

# Enable compression for all communication between nodes (disabled by default):
#
#transport.tcp.compress: true

# Set a custom port to listen for HTTP traffic:
#
#http.port: 9200

# Set a custom allowed content length:
#
#http.max_content_length: 100mb

# Enable HTTP:
#
http.enabled: true
http.cors.enabled: true
http.cors.allow-origin: /.*/


################################### Gateway ###################################

# The gateway allows for persisting the cluster state between full cluster
# restarts. Every change to the state (such as adding an index) will be stored
# in the gateway, and when the cluster starts up for the first time,
# it will read its state from the gateway.

# There are several types of gateway implementations. For more information, see
# <http://elasticsearch.org/guide/en/elasticsearch/reference/current/modules-gateway.html>.

# The default gateway type is the "local" gateway (recommended):
#
#gateway.type: local

# Settings below control how and when to start the initial recovery process on
# a full cluster restart (to reuse as much local data as possible when using shared
# gateway).

# Allow recovery process after N nodes in a cluster are up:
#
#gateway.recover_after_nodes: 1

# Set the timeout to initiate the recovery process, once the N nodes
# from previous setting are up (accepts time value):
#
#gateway.recover_after_time: 5m

# Set how many nodes are expected in this cluster. Once these N nodes
# are up (and recover_after_nodes is met), begin recovery process immediately
# (without waiting for recover_after_time to expire):
#
#gateway.expected_nodes: 2


############################# Recovery Throttling #############################

# These settings allow to control the process of shards allocation between
# nodes during initial recovery, replica allocation, rebalancing,
# or when adding and removing nodes.

# Set the number of concurrent recoveries happening on a node:
#
# 1. During the initial recovery
#
#cluster.routing.allocation.node_initial_primaries_recoveries: 4
#
# 2. During adding/removing nodes, rebalancing, etc
#
#cluster.routing.allocation.node_concurrent_recoveries: 2

# Set to throttle throughput when recovering (eg. 100mb, by default 20mb):
#
#indices.recovery.max_bytes_per_sec: 20mb

# Set to limit the number of open concurrent streams when
# recovering a shard from a peer:
#
#indices.recovery.concurrent_streams: 5


################################## Discovery ##################################

# Discovery infrastructure ensures nodes can be found within a cluster
# and master node is elected. Multicast discovery is the default.

# Set to ensure a node sees N other master eligible nodes to be considered
# operational within the cluster. This should be set to a quorum/majority of
# the master-eligible nodes in the cluster.
#
#discovery.zen.minimum_master_nodes: 1

# Set the time to wait for ping responses from other nodes when discovering.
# Set this option to a higher value on a slow or congested network
# to minimize discovery failures:
#
#discovery.zen.ping.timeout: 3s

# For more information, see
# <http://elasticsearch.org/guide/en/elasticsearch/reference/current/modules-discovery-zen.html>

# Unicast discovery allows to explicitly control which nodes will be used
# to discover the cluster. It can be used when multicast is not present,
# or to restrict the cluster communication-wise.
#
# 1. Disable multicast discovery (enabled by default):
#
#discovery.zen.ping.multicast.enabled: false
#
# 2. Configure an initial list of master nodes in the cluster
#    to perform discovery when new nodes (master or data) are started:
#
#discovery.zen.ping.unicast.hosts: ["host1", "host2:port"]

# EC2 discovery allows to use AWS EC2 API in order to perform discovery.
#
# You have to install the cloud-aws plugin for enabling the EC2 discovery.
#
# For more information, see
# <http://elasticsearch.org/guide/en/elasticsearch/reference/current/modules-discovery-ec2.html>
#
# See <http://elasticsearch.org/tutorials/elasticsearch-on-ec2/>
# for a step-by-step tutorial.

# GCE discovery allows to use Google Compute Engine API in order to perform discovery.
#
# You have to install the cloud-gce plugin for enabling the GCE discovery.
#
# For more information, see <https://github.com/elasticsearch/elasticsearch-cloud-gce>.

# Azure discovery allows to use Azure API in order to perform discovery.
#
# You have to install the cloud-azure plugin for enabling the Azure discovery.
#
# For more information, see <https://github.com/elasticsearch/elasticsearch-cloud-azure>.

################################## Slow Log ##################################

# Shard level query and fetch threshold logging.

#index.search.slowlog.threshold.query.warn: 10s
#index.search.slowlog.threshold.query.info: 5s
#index.search.slowlog.threshold.query.debug: 2s
#index.search.slowlog.threshold.query.trace: 500ms

#index.search.slowlog.threshold.fetch.warn: 1s
#index.search.slowlog.threshold.fetch.info: 800ms
#index.search.slowlog.threshold.fetch.debug: 500ms
#index.search.slowlog.threshold.fetch.trace: 200ms

#index.indexing.slowlog.threshold.index.warn: 10s
#index.indexing.slowlog.threshold.index.info: 5s
#index.indexing.slowlog.threshold.index.debug: 2s
#index.indexing.slowlog.threshold.index.trace: 500ms

################################## GC Logging ################################

#monitor.jvm.gc.young.warn: 1000ms
#monitor.jvm.gc.young.info: 700ms
#monitor.jvm.gc.young.debug: 400ms

#monitor.jvm.gc.old.warn: 10s
#monitor.jvm.gc.old.info: 5s
#monitor.jvm.gc.old.debug: 2s

################################## Security ################################

# Uncomment if you want to enable JSONP as a valid return transport on the
# http server. With this enabled, it may pose a security risk, so disabling
# it unless you need it is recommended (it is disabled by default).
#
#http.jsonp.enable: true

For Elasticsearch 2.x:

# ======================== Elasticsearch Configuration =========================
#
# NOTE: Elasticsearch comes with reasonable defaults for most settings.
#       Before you set out to tweak and tune the configuration, make sure you
#       understand what are you trying to accomplish and the consequences.
#
# The primary way of configuring a node is via this file. This template lists
# the most important settings you may want to configure for a production cluster.
#
# Please see the documentation for further information on configuration options:
# <http://www.elastic.co/guide/en/elasticsearch/reference/current/setup-configuration.html>
#
# ---------------------------------- Cluster -----------------------------------
#
# Use a descriptive name for your cluster:
#
cluster.name: elasticsearch
#
# ------------------------------------ Node ------------------------------------
#
# Use a descriptive name for the node:
#
node.name: decanter
#
# Add custom attributes to the node:
#
# node.rack: r1
#
# ----------------------------------- Paths ------------------------------------
#
# Path to directory where to store the data (separate multiple locations by comma):
#
# path.data: /path/to/data
path.data: data
path.home: data
#
# Path to log files:
#
# path.logs: /path/to/logs
#
# ----------------------------------- Memory -----------------------------------
#
# Lock the memory on startup:
#
# bootstrap.mlockall: true
#
# Make sure that the `ES_HEAP_SIZE` environment variable is set to about half the memory
# available on the system and that the owner of the process is allowed to use this limit.
#
# Elasticsearch performs poorly when the system is swapping the memory.
#
# ---------------------------------- Network -----------------------------------
#
# Set the bind address to a specific IP (IPv4 or IPv6):
#
# network.host: 192.168.0.1
#
# Set a custom port for HTTP:
#
# http.port: 9200
#
# For more information, see the documentation at:
# <http://www.elastic.co/guide/en/elasticsearch/reference/current/modules-network.html>
#
# --------------------------------- Discovery ----------------------------------
#
# Pass an initial list of hosts to perform discovery when new node is started:
# The default list of hosts is ["127.0.0.1", "[::1]"]
#
# discovery.zen.ping.unicast.hosts: ["host1", "host2"]
#
# Prevent the "split brain" by configuring the majority of nodes (total number of nodes / 2 + 1):
#
# discovery.zen.minimum_master_nodes: 3
#
# For more information, see the documentation at:
# <http://www.elastic.co/guide/en/elasticsearch/reference/current/modules-discovery.html>
#
# ---------------------------------- Gateway -----------------------------------
#
# Block initial recovery after a full cluster restart until N nodes are started:
#
# gateway.recover_after_nodes: 3
#
# For more information, see the documentation at:
# <http://www.elastic.co/guide/en/elasticsearch/reference/current/modules-gateway.html>
#
# ---------------------------------- Various -----------------------------------
#
# Disable starting multiple nodes on a single system:
#
# node.max_local_storage_nodes: 1
#
# Require explicit names when deleting indices:
#
# action.destructive_requires_name: true

It’s a "standard" elasticsearch configuration file, allowing you to configure the embedded elasticsearch instance.

Warning: if you change the etc/elasticsearch.yml file, you have to restart (with the bundle:restart command) the Decanter elasticsearch bundle in order to load the changes.

The Decanter elasticsearch node also supports loading and override of the settings using a etc/org.apache.karaf.decanter.elasticsearch.cfg configuration file. This file is not provided by default, as it’s used for override of the default settings.

You can override the following elasticsearch properties in this configuration file:

  • cluster.name

  • http.enabled

  • node.data

  • node.name

  • node.master

  • path.data

  • network.host

  • cluster.routing.schedule

  • path.plugins

  • http.cors.enabled

  • http.cors.allow-origin

The advantage of using this file is that the elasticsearch node is automatically restarted in order to reload the settings as soon as you change the cfg file.

Embedding Decanter Kibana 3.x (only working with Elasticsearch 1.x)

In addition of the embedded elasticsearch 1.x instance, Decanter also provides an embedded Kibana 3.x instance, containing ready to use Decanter dashboards.

The kibana feature installs the embedded kibana instance:

karaf@root()> feature:install kibana/3.1.1

By default, the kibana instance is available on http://host:8181/kibana.

The Decanter Kibana instance provides ready to use dashboards:

  • Karaf dashboard uses the data harvested by the default JMX collector, and the log collector. Especially, it provides details about the threads, memory, garbage collection, etc.

  • Camel dashboard uses the data harvested by the default JMX collector, or the Camel (JMX) collector. It can also leverage the Camel Tracer collector. It provides details about routes processing time, the failed exchanges, etc. This dashboard requires some tuning (updating the queries to match the route IDs).

  • ActiveMQ dashboard uses the data harvested by the default JMX collector, or the ActiveMQ (JMX) collector. It provides details about the pending queue, the system usage, etc.

  • OperatingSystem dashboard uses the data harvested by the system collector. The default dashboard expects data containing the filesystem usage, and temperature data. It’s just a sample, you have to tune the system collector and adapt this dashboard accordingly.

You can change these dashboards to add new panels, change the existing panels, etc.

Of course, you can create your own dashboards, starting from blank or simple dashboards.

By default, Decanter Kibana uses embedded elasticsearch instance. However, it’s possible to use a remote elasticsearch instance by providing the elasticsearch parameter on the URL like this for instance:

http://localhost:8181/kibana?elasticsearch=http://localhost:9400
Embedding Decanter Kibana 4.x (only working with Elasticsearch 2.x)

In addition of the embedded elasticsearch 2.x instance, Decanter also provides an embedded Kibana 4.x instance.

The kibana feature installs the embedded kibana instance:

karaf@root()> feature:install kibana/4.1.2

By default, the kibana instance is available on http://host:8181/kibana.

Note

Decanter Kibana 4 automatically detects collector features. Then, it automatically creates corresponding dashboards.

However, you still have a complete control of the visualizations and dashboards. You can update the index to automatically include new fields and create your own visualizations and dashboards.

The default dashboard displayed is the "System" dashboard, requiring the jmx collector.

Elasticsearch Head console

In addition of the embedded elasticsearch instance, Decanter also provides a web console allowing you to monitor and manage your elasticsearch cluster. It’s a ready to use elastisearch-head console, directly embedded in Karaf.

The elasticsearch-head feature installs the embedded elasticsearch-head web console, corresponding to the elasticsearch version you are using.

We can install elasticsearch-head 1.x feature, working with elasticsearch 1.x:

karaf@root()> feature:install elasticsearch-head/1.7.3

or 2.x feature, working with elasticsearch 2.x:

karaf@root()> feature:install elasticsearch-head/2.2.0

By default, the elasticsearch-head web console is available on http://host:8181/elasticsearch-head.

1.3.3. JDBC

The Decanter JDBC appender allows your to store the data (coming from the collectors) into a database.

The Decanter JDBC appender transforms the data as a json string. The appender stores the json string and the timestamp into the database.

The decanter-appender-jdbc feature installs the jdbc appender:

karaf@root()> feature:install decanter-appender-jdbc

This feature also installs the etc/org.apache.karaf.decanter.appender.jdbc.cfg configuration file:

#######################################
# Decanter JDBC Appender Configuration
#######################################

# Name of the JDBC datasource
datasource.name=jdbc/decanter

# Name of the table storing the collected data
table.name=decanter

# Dialect (type of the database)
# The dialect is used to create the table
# Supported dialects are: generic, derby, mysql
# Instead of letting Decanter created the table, you can create the table by your own
dialect=generic

This configuration file allows you to specify the connection to the database:

  • the datasource.name property contains the name of the JDBC datasource to use to connect to the database. You can create this datasource using the Karaf jdbc:create command (provided by the jdbc feature).

  • the table.name property contains the table name in the database. The Decanter JDBC appender automatically creates the table for you, but you can create the table by yourself. The table is simple and contains just two column:

    • timestamp as INTEGER

    • content as VARCHAR or CLOB

  • the dialect property allows you to specify the database type (generic, mysql, derby). This property is only used for the table creation.

1.3.4. JMS

The Decanter JMS appender "forwards" the data (collected by the collectors) to a JMS broker.

The appender sends a JMS Map message to the broker. The Map message contains the harvested data.

The decanter-appender-jms feature installs the JMS appender:

karaf@root()> feature:install decanter-appender-jms

This feature also installs the etc/org.apache.karaf.decanter.appender.jms.cfg configuration file containing:

#####################################
# Decanter JMS Appender Configuration
#####################################

# Name of the JMS connection factory
connection.factory.name=jms/decanter

# Name of the destination
destination.name=decanter

# Type of the destination (queue or topic)
destination.type=queue

# Connection username
# username=

# Connection password
# password=

This configuration file allows you to specify the connection properties to the JMS broker:

  • the connection.factory.name property specifies the JMS connection factory to use. You can create this JMS connection factory using the jms:create command (provided by the jms feature).

  • the destination.name property specifies the JMS destination name where to send the data.

  • the destination.type property specifies the JMS destination type (queue or topic).

  • the username property is optional and specifies the username to connect to the destination.

  • the password property is optional and specifies the username to connect to the destination.

1.3.5. Camel

The Decanter Camel appender sends the data (collected by the collectors) to a Camel endpoint.

It’s a very flexible appender, allowing you to use any Camel route to transform and forward the harvested data.

The Camel appender creates a Camel exchange and set the "in" message body with a Map of the harvested data. The exchange is send to a Camel endpoint.

The decanter-appender-camel feature installs the Camel appender:

karaf@root()> feature:install decanter-appender-camel

This feature also installs the etc/org.apache.karaf.decanter.appender.camel.cfg configuration file containing:

#
# Decanter Camel appender configuration
#

# The destination.uri contains the URI of the Camel endpoint
# where Decanter sends the collected data
destination.uri=direct-vm:decanter

This file allows you to specify the Camel endpoint where to send the data:

  • the destination.uri property specifies the URI of the Camel endpoint where to send the data.

The Camel appender send an exchange. The "in" message body contains a Map of the harvested data.

For instance, in this configuration file, you can specify:

destination.uri=direct-vm:decanter

And you can deploy the following Camel route definition:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

  <camelContext xmlns="http://camel.apache.org/schema/blueprint">
    <route id="decanter">
      <from uri="direct-vm:decanter"/>
      ...
      ANYTHING
      ...
    </route>
  </camelContext>

</blueprint>

This route will receive the Map of harvested data. Using the body of the "in" message, you can do what you want:

  • transform and convert to another data format

  • use any Camel EIPs (Enterprise Integration Patterns)

  • send to any Camel endpoint

1.3.6. Kafka

The Decanter Kafka appender sends the data (collected by the collectors) to a Kafka topic.

The decanter-appender-kafka feature installs the Kafka appender:

karaf@root()> feature:install decanter-appender-kafka

This feature installs a default etc/org.apache.karaf.decanter.appender.kafka.cfg configuration file containing:

##################################
# Decanter JMS Kafka Configuration
##################################

# A list of host/port pairs to use for establishing the initial connection to the Kafka cluster
#bootstrap.servers=localhost:9092

# An id string to pass to the server when making requests
# client.id

# The compression type for all data generated by the producer
# compression.type=none

# The number of acknowledgments the producer requires the leader to have received before considering a request complete
# - 0: the producer doesn't wait for ack
# - 1: the producer just waits for the leader
# - all: the producer waits for leader and all followers (replica), most secure
# acks=all

# Setting a value greater than zero will cause the client to resend any record whose send fails with a potentially transient error
# retries=0

# The producer will attempt to batch records together into fewer requests whenever multiple records are being sent to the same partition
# batch.size=16384

# The total bytes of memory the producer can use to buffer records waiting to be sent to the server.
# If records are sent faster than they can be delivered to the server the producer will either block or throw an exception
# buffer.memory=33554432

# Serializer class for key that implements the Serializer interface
# key.serializer=org.apache.kafka.common.serialization.StringSerializer

# Serializer class for value that implements the Serializer interface.
# value.serializer=org.apache.kafka.common.serialization.StringSerializer

# Producer request timeout
# request.timeout.ms=5000

# Max size of the request
# max.request.size=2097152

# Name of the topic
# topic=decanter

# Security (SSL)
# security.protocol=SSL

# SSL truststore location (Kafka broker) and password
# ssl.truststore.location=${karaf.etc}/keystores/keystore.jks
# ssl.truststore.password=karaf

# SSL keystore (if client authentication is required)
# ssl.keystore.location=${karaf.etc}/keystores/clientstore.jks
# ssl.keystore.password=karaf
# ssl.key.password=karaf

# (Optional) SSL provider (default uses the JVM one)
# ssl.provider=

# (Optional) SSL Cipher suites
# ssl.cipher.suites=

# (Optional) SSL Protocols enabled (default is TLSv1.2,TLSv1.1,TLSv1)
# ssl.enabled.protocols=TLSv1.2,TLSv1.1,TLSv1

# (Optional) SSL Truststore type (default is JKS)
# ssl.truststore.type=JKS

# (Optional) SSL Keystore type (default is JKS)
# ssl.keystore.type=JKS

# Security (SASL)
# For SASL, you have to configure Java System property as explained in http://kafka.apache.org/documentation.html#security_ssl

This file allows you to define how the messages are sent to the Kafka broker:

  • the bootstrap.servers contains a lit of host:port of the Kafka brokers. Default value is localhost:9092.

  • the client.id is optional. It identifies the client on the Kafka broker.

  • the compression.type defines if the messages have to be compressed on the Kafka broker. Default value is none meaning no compression.

  • the acks defines the acknowledgement policy. Default value is all. Possible values are:

    • 0 means the appender doesn’t wait acknowledge from the Kafka broker. Basically, it means there’s no guarantee that messages have been received completely by the broker.

    • 1 means the appender waits the acknowledge only from the leader. If the leader falls down, it’s possible messages are lost if the replicas are not yet be created on the followers.

    • all means the appender waits the acknowledge from the leader and all followers. This mode is the most reliable as the appender will receive the acknowledge only when all replicas have been created. NB: this mode doesn’t make sense if you have a single node Kafka broker or a replication factor set to 1.

  • the retries defines the number of retries performed by the appender in case of error. The default value is 0 meaning no retry at all.

  • the batch.size defines the size of the batch records. The appender will attempt to batch records together into fewer requests whenever multiple records are being sent to the same Kafka partition. The default value is 16384.

  • the buffer.memory defines the size of the buffer the appender uses to send to the Kafka broker. The default value is 33554432.

  • the key.serializer defines the full qualified class name of the Serializer used to serializer the keys. The default is a String serializer (org.apache.kafka.common.serialization.StringSerializer).

  • the value.serializer defines the full qualified class name of the Serializer used to serializer the values. The default is a String serializer (org.apache.kafka.common.serialization.StringSerializer).

  • the request.timeout.ms is the time the producer wait before considering the message production on the broker fails (default is 5s).

  • the max.request.size is the max size of the request sent to the broker (default is 2097152 bytes).

  • the topic defines the name of the topic where to send data on the Kafka broker.

It’s also possible to enable SSL security (with Kafka 0.9.x) using the SSL properties.

1.3.7. Redis

The Decanter Redis appender sends the data (collected by the collectors) to a Redis broker.

The decanter-appender-redis feature installs the Redis appender:

karaf@root()> feature:install decanter-appender-redis

This feature also installs a default etc/org.apache.karaf.decanter.appender.redis.cfg configuration file containing:

#######################################
# Decanter Redis Appender Configuration
#######################################

#
# Location of the Redis broker
# It's possible to use a list of brokers, for instance:
# host= locahost:6389,localhost:6332,localhost:6419
#
# Default is localhost:6379
#
address=localhost:6379

#
# Define the connection mode.
# Possible modes: Single (default), Master_Slave, Sentinel, Cluster
#
mode=Single

#
# Name of the Redis map
# Default is Decanter
#
map=Decanter

#
# For Master_Slave mode, we define the location of the master
# Default is localhost:6379
#
#masterAddress=localhost:6379

#
# For Sentinel model, define the name of the master
# Default is myMaster
#
#masterName=myMaster

#
# For Cluster mode, define the scan interval of the nodes in the cluster
# Default value is 2000 (2 seconds).
#
#scanInterval=2000

This file allows you to configure the Redis broker to use:

  • the address property contains the location of the Redis broker

  • the mode property defines the Redis topology to use (Single, Master_Slave, Sentinel, Cluster)

  • the map property contains the name of the Redis map to use

  • the masterAddress is the location of the master when using the Master_Slave topology

  • the masterName is the name of the master when using the Sentinel topology

  • the scanInternal is the scan interval of the nodes when using the Cluster topology

1.3.8. MQTT

The Decanter MQTT appender sends the data (collected by the collectors) to a MQTT broker.

The decanter-appender-mqtt feature installs the MQTT appender:

karaf@root()> feature:install decanter-appender-mqtt

This feature installs a default etc/org.apache.karaf.decanter.appender.mqtt.cfg configuration file containing:

#server=tcp://localhost:9300
#clientId=decanter
#topic=decanter

This file allows you to configure the location and where to send in the MQTT broker:

  • the server contains the location of the MQTT broker

  • the clientId identifies the appender on the MQTT broker

  • the topic is the name of the topic where to send the messages

1.3.9. Cassandra

The Decanter Cassandra appender allows you to store the data (coming from the collectors) into an Apache Cassandra database.

The decanter-appender-cassandra feature installs this appender:

karaf@root()> feature:install decanter-appender-cassandra

This feature installs the appender and a default etc/org.apache.karaf.decanter.appender.cassandra.cfg configuration file containing:

###########################################
# Decanter Cassandra Appender Configuration
###########################################

# Name of Keyspace
keyspace.name=decanter

# Name of table to write to
table.name=decanter

# Cassandra host name
cassandra.host=

# Cassandra port
cassandra.port=9042
  • the keyspace.name property identifies the keyspace used for Decanter data

  • the table.name property defines the name of the table where to store the data

  • the cassandra.host property contains the hostname or IP address where the Cassandra instance is running (default is localhost)

  • the cassandra.port property contains the port number of the Cassandra instance (default is 9042)

1.3.10. MongoDB

The Decanter MongoDB appender allows you to store the data (coming from the collectors) into a MongoDB database.

The decanter-appender-mongodb feature installs this appender:

karaf@root()> feature:install decanter-appender-mongodb

This feature installs the appender and a default etc/org.apache.karaf.decanter.appender.mongodb.cfg configuration file containing:

################################
# Decanter MongoDB Configuration
################################

# MongoDB connection URI
#uri=mongodb://localhost

# MongoDB database name
#database=decanter

# MongoDB collection name
#collection=decanter
  • the uri property contains the location of the MongoDB instance

  • the database property contains the name of the MongoDB database

  • the collection property contains the name of the MongoDB collection

1.3.11. Network socket

The Decanter network socket appender send the collected data to a remote Decanter network socket collector.

The use case could be to dedicate a Karaf instance as a central monitoring platform, receiving collected data from the other nodes.

The decanter-appender-socket feature installs this appender:

karaf@root()> feature:install decanter-appender-socket

This feature installs the appender and a default etc/org.apache.karaf.decanter.appender.socket.cfg configuration file containing:

# Decanter Socket Appender

# Hostname (or IP address) where to send the collected data
#host=localhost

# Port number where to send the collected data
#port=34343
  • the host property contains the hostname or IP address of the remote network socket collector

  • the port property contains the port number of the remote network socket collector

1.4. SLA (Service Level Agreement)

Decanter provides a SLA (Service Level Agreement) layer. It allows you to check values of harvested data (coming from the collectors) and send alerts when the data is not in the expected state.

1.4.1. Checker

The SLA checker is automatically installed as soon as you install a SLA alerter feature.

It uses the etc/org.apache.karaf.decanter.sla.checker.cfg configuration file.

This file contains the check to perform on the collected properties.

The format of this file is:

type.propertyName.alertLevel=checkType:value

where:

  • type is optional. It allows you to filter the SLA check for a given type of collected data. It’s particulary interesting when Decanter collects multiple JMX object names or servers. You may want to perform different checks depending of the type or source of the collected data.

  • propertyName is the data property key. For instance, loggerName, message, HeapMemoryUsage.used, etc.

  • alertLevel is the alerting level for this check. The only two possible values are error (critical alert), or warn (severe alert).

  • checkType is the check type. Possible values are range, equal, notequal, match, and notmatch.

  • value is the check value, where the data property value has to verify.

The Decanter SLA Checker supports numeric or string check.

To verify a numeric value, you can use:

  • range to check if the metric is between two values

  • equal to check if the metric is equal to a value

  • notequal to check if the metric is not equal to a value

For instance, if you want to check that the number of threads is between 0 and 70, you can use:

ThreadCount.error=range:[0,70]

You can also filter and specify the type on which we check:

jmx-local.ThreadCount.error=range:[0,70]

If the thread count is out of this range, Decanter will create an error alert sent to the alerters.

Another example is if you want to check if the myValue is equal to 10:

myValue.warn=equal:10

If myValue is not equal to 10, Decanter will create a warn alert send to the alerters.

To verify a string value, you can use:

  • match to check if the metric matches a regex

  • notmatch to check if the matric doesn’t match a regex

For instance, if you want to create an alert when an ERROR log message happens, you can use:

loggerLevel.error=match:ERROR

You can also use "complex" regex:

loggerName.warn=match:(.*)my\.loggger\.name\.(.*)

1.4.2. Alerters

When the value doesn’t verify the check in the checker configuration, an alert is created an sent to the alerters.

Apache Karaf Decanter provides ready to use alerters.

Log

The Decanter SLA Log alerter log a message for each alert.

The decanter-sla-log feature installs the SLA log alerter:

karaf@root()> feature:install decanter-sla-log

This alerter doesn’t need any configuration.

E-mail

The Decanter SLA e-mail alerter sends an e-mail for each alert.

The decanter-sla-email feature installs the SLA e-mail alerter:

karaf@root()> feature:install decanter-sla-email

This feature also installs the etc/org.apache.karaf.decanter.sla.email.cfg configuration file where you can specify the SMTP server and e-mail addresses to use:

#
# Decanter SLA e-mail alerter configuration
#

# From e-mail address
from=

# To e-mail address
to=

# Hostname of the SMTP server
host=smtp.gmail.com

# Port of the SMTP server
port=587

# enable SMTP auth
auth=true

# enable starttls and ssl
starttls=true
ssl=false

# Optionally, username for the SMTP server
#username=

# Optionally, password for the SMTP server
#password=
  • the from property specifies the from e-mail address (for instance [email protected])

  • the to property specifies the to e-mail address (for instance [email protected])

  • the host property specifies the SMTP server hostname or IP address

  • the port property specifies the SMTP server port number

  • the auth property (true or false) specifies if the SMTP server requires authentication (true) or not (false)

  • the starttls property (true or false) specifies if the SMTP server requires STARTTLS (true) or not (false)

  • the ssl property (true or false) specifies if the SMTP server requires SSL (true) or not (false)

  • the username property is optional and specifies the username to connect to the SMTP server

  • the password property is optional and specifies the password to connect to the SMTP server

Camel

The Decanter SLA Camel alerter sends each alert to a Camel endpoint.

It allows you to create a route which reacts to each alert. It’s a very flexible alerter as you can apply transformation, use EIPs, Camel endpoints, etc.

This alerter creates a Camel exchange. The body of the "in" message contains a Map with all alert details (including alertLevel, alertAttribute, alertPattern and all other details).

The decanter-sla-camel feature installs the Camel alerter:

karaf@root()> feature:install decanter-sla-camel

This feature also installs the etc/org.apache.karaf.decanter.sla.camel.cfg configuration file:

#
# Decanter SLA Camel alerter
#

# alert.destination.uri defines the Camel endpoint URI where
# Decanter send the SLA alerts
alert.destination.uri=direct-vm:decanter-alert

This configuration file allows you to specify the Camel endpoint URI where to send the alert (using the alert.destination.uri property).

For instance, in this configuration, if you define:

alert.destination.uri=direct-vm:decanter-alert

You can create the following Camel route which will react to the alert:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

  <camelContext xmlns="http://camel.apache.org/schema/blueprint">
    <route id="decanter-alert">
      <from uri="direct-vm:decanter-alert"/>
      ...
      ANYTHING
      ...
    </route>
  </camelContext>

</blueprint>

2. Developer Guide

2.1. Architecture

Apache Karaf Decanter uses OSGi EventAdmin to dispatch the harvested data between the collectors and the appenders, and also to throw the alerts to the alerters:

  • decanter/collect/* EventAdmin topics are used by the collectors to send the harvested data. The appenders consume from these topics and insert the data in a backend.

  • decanter/alert/* EventAdmin topics are used by the SLA checker to send the alerts. The SLA alerters consume from these topics.

Decanter uses EventAdmin topics as monitoring events dispatcher.

Collectors, appenders, and alerters are simple OSGi services exposed by different bundles.

It means that you can easily extend Decanter adding your own collectors, appenders, or alerters.

2.2. Custom Collector

A Decanter collector sends an OSGi EventAdmin event to a decanter/collect/* topic.

You can create two kinds of collector:

  • event driven collector automatically reacts to some internal events. It creates an event sent to a topic.

  • polled collector is a Runnable OSGi service periodically executed by the Decanter Scheduler.

2.2.1. Event Driven Collector

For instance, the log collector is event driven: it automatically reacts to internal log events.

To illustrate an Event Driven Collector, we can create a BundleCollector. This collector will react when a bundle state changes (installed, started, stopped, uninstalled).

The purpose is to send a monitoring event in a collect topic. This monitoring event can be consumed by the appenders.

We create the following BundleCollector class implementing SynchronousBundleListener interface:

package org.apache.karaf.decanter.sample.collector;

import org.osgi.framework.SynchronousBundleListener;
import org.osgi.service.event.EventAdmin;
import org.osgi.service.event.Event;
import java.util.HashMap;

public class BundleCollector implements SynchronousBundleListener {

    private EventAdmin eventAdmin;

    public BundleCollector(Event eventAdmin) {
      this.eventAdmin = eventAdmin;
    }

    @Override
    public void bundleChanged(BundleEvent bundleEvent) {
      HashMap<String, Object> data = new HashMap<>();
      data.put("type", "bundle");
      data.put("change", bundleEvent.getType());
      data.put("id", bundleEvent.getBundle().getId());
      data.put("location", bundleEvent.getBundle().getLocation());
      data.put("symbolicName", bundleEvent.getBundle().getSymbolicName());
      Event event = new Event("decanter/collect/bundle", data);
      eventAdmin.postEvent(event);
    }

}

You can see here the usage of the OSGi EventAdmin as dispatcher: the collector creates a data map, and send it to a decanter/collect/bundle topic.

We just need an Activator in the collector bundle to start our BundleCollector listener:

package org.apache.karaf.decanter.sample.collector;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;
import org.osgi.framework.ServiceReference;
import org.osgi.framework.ServiceRegistration;
import org.osgi.service.event.EventAdmin;
import org.osgi.util.tracker.ServiceTracker;

public class Activator implements BundleActivator {

       private BundleCollector collector;

       public void start(final BundleContext bundleContext) {
           ServiceTracker tracker = new ServiceTracker(bundleContext, EventAdmin.class.getName(), null);
           EventAdmin eventAdmin = (EventAdmin) tracker.waitForService(10000);
           collector = new BundleCollector(eventAdmin);
       }

       public void stop(BundleContext bundleContext) {
           collector = null;
       }

}

Now, we just need a Maven pom.xml to package the bundle with the correct OSGi headers:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

    <!--

        Licensed to the Apache Software Foundation (ASF) under one or more
        contributor license agreements.  See the NOTICE file distributed with
        this work for additional information regarding copyright ownership.
        The ASF licenses this file to You under the Apache License, Version 2.0
        (the "License"); you may not use this file except in compliance with
        the License.  You may obtain a copy of the License at

           http://www.apache.org/licenses/LICENSE-2.0

        Unless required by applicable law or agreed to in writing, software
        distributed under the License is distributed on an "AS IS" BASIS,
        WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
        See the License for the specific language governing permissions and
        limitations under the License.
    -->

    <modelVersion>4.0.0</modelVersion>

    <groupId>org.apache.karaf.decanter.sample.collector</groupId>
    <artifactId>org.apache.karaf.decanter.sample.collector.bundle</artifactId>
    <version>1.0.0-SNAPSHOT</version>
    <packaging>bundle</packaging>
    <name>Apache Karaf :: Decanter :: Sample :: Collector :: Bundle</name>

    <dependencies>

        <!-- OSGi -->
        <dependency>
            <groupId>org.osgi</groupId>
            <artifactId>org.osgi.core</artifactId>
            <version>4.3.1</version>
        </dependency>
        <dependency>
            <groupId>org.osgi</groupId>
            <artifactId>org.osgi.compendium</artifactId>
            <version>4.3.1</version>
        </dependency>

    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.felix</groupId>
                <artifactId>maven-bundle-plugin</artifactId>
                <version>2.4.0</version>
                <inherited>true</inherited>
                <extensions>true</extensions>
                <configuration>
                    <instructions>
                        <Bundle-SymbolicName>${project.artifactId}</Bundle-SymbolicName>
                        <Bundle-Version>${project.version}</Bundle-Version>
                        <Bundle-Activator>org.apache.karaf.decanter.sample.collector.bundle.Activator</Bundle-Activator>
                        <Import-Package>
                            *
                        </Import-Package>
                    </instructions>
                </configuration>
            </plugin>
        </plugins>
    </build>

</project>

You can now enable this collector, just by installing the bundle in Apache Karaf (using the deploy folder, or the bundle:install command.

2.2.2. Polled Collector

You can also create a polled collector.

A polled collector is basically a Runnable OSGi service, periodically executed for you by the Decanter Scheduler.

The run() method of the polled collector is responsible to harvest the data and send the monitoring event.

For instance, we can create a very simple polled collector sending a constant Hello World string.

We create the HelloCollector class implementing the Runnable interface:

package org.apache.karaf.decanter.sample.collector.hello;

import org.osgi.service.event.Event;
import org.osgi.service.event.EventAdmin;
import java.util.HashMap;

public class HelloCollector implements Runnable {

  private EventAdmin eventAdmin;

  public HelloCollector(EventAdmin eventAdmin) {
    this.eventAdmin = eventAdmin;
  }

  @Override
  public void run() {
    HashMap<String, Object> data = new HashMap<>();
    data.put("type", "hello");
    data.put("message", "Hello World");
    Event event = new Event("decanter/collect/hello", data);
    eventAdmin.postEvent(event);
  }

}

You can see the run() method which post the monitoring event in the decanter/collector/hello topic.

We just need a BundleActivator to register the HelloCollector as an OSGi service:

package org.apache.karaf.decanter.sample.collector.hello;

import org.osgi.framework.*;
import org.osgi.service.event.EventAdmin;
import org.osgi.util.tracker.ServiceTracker;

public class Activator implements BundleActivator {

    private ServiceRegistration registration;

    public void start(BundleContext bundleContext) {
       ServiceTracker tracker = new ServiceTracker(bundleContext, EventAdmin.class.getName(), null);
       EventAdmin eventAdmin = tracker.waitForService(10000);
       HelloCollector collector = new HelloCollector(eventAdmin);

       Dictionary<String, String> serviceProperties = new Hashtable<String, String>();
       serviceProperties.put("decanter.collector.name", "hello");
       registration = bundleContext.registerService(Runnable.class, collector, serviceProperties);
    }

    public void stop(BundleContext bundleContext) {
       if (registration != null) registration.unregister();
    }

}

Now, we can package the bundle using the following Maven pom.xml:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

    <!--

        Licensed to the Apache Software Foundation (ASF) under one or more
        contributor license agreements.  See the NOTICE file distributed with
        this work for additional information regarding copyright ownership.
        The ASF licenses this file to You under the Apache License, Version 2.0
        (the "License"); you may not use this file except in compliance with
        the License.  You may obtain a copy of the License at

           http://www.apache.org/licenses/LICENSE-2.0

        Unless required by applicable law or agreed to in writing, software
        distributed under the License is distributed on an "AS IS" BASIS,
        WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
        See the License for the specific language governing permissions and
        limitations under the License.
    -->

    <modelVersion>4.0.0</modelVersion>

    <groupId>org.apache.karaf.decanter.sample.collector</groupId>
    <artifactId>org.apache.karaf.decanter.sample.collector.hello</artifactId>
    <version>1.0.0-SNAPSHOT</version>
    <packaging>bundle</packaging>
    <name>Apache Karaf :: Decanter :: Sample :: Collector :: Hello</name>

    <dependencies>

        <!-- OSGi -->
        <dependency>
            <groupId>org.osgi</groupId>
            <artifactId>org.osgi.core</artifactId>
            <version>4.3.1</version>
        </dependency>
        <dependency>
            <groupId>org.osgi</groupId>
            <artifactId>org.osgi.compendium</artifactId>
            <version>4.3.1</version>
        </dependency>

    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.felix</groupId>
                <artifactId>maven-bundle-plugin</artifactId>
                <version>2.4.0</version>
                <inherited>true</inherited>
                <extensions>true</extensions>
                <configuration>
                    <instructions>
                        <Bundle-SymbolicName>${project.artifactId}</Bundle-SymbolicName>
                        <Bundle-Version>${project.version}</Bundle-Version>
                        <Bundle-Activator>org.apache.karaf.decanter.sample.collector.hello.Activator</Bundle-Activator>
                        <Import-Package>
                            *
                        </Import-Package>
                    </instructions>
                </configuration>
            </plugin>
        </plugins>
    </build>

</project>

You can now enable this collector, just by installing the bundle in Apache Karaf (using the deploy folder, or the bundle:install command.

2.3. Custom Appender

A Decanter Appender is an OSGi EventAdmin EventHandler: it’s listening of decanter/collect/* EventAdmin topics, and receives the monitoring data coming from the collectors.

It’s responsible to store the data into a target backend.

To enable a new Decanter Appender, you just have to register an EventHandler OSGi service.

For instance, if you want to create a very simple SystemOutAppender that displays the monitoring data (coming from the collectors) to System.out, you can create the following SystemOutAppender class implementing EventHandler interface:

package org.apache.karaf.decanter.sample.appender.systemout;

import org.osgi.service.event.Event;
import org.osgi.service.event.EventHandler;

import java.util.HashMap;

public class SystemOutAppender implements EventHandler {

    @Override
    public void handleEvent(Event event) {
        for (String name : event.getPropertyNames()) {
            System.out.println(name + ":" + event.getProperty(name));
        }
    }

}

Now, we create a BundleActivator that register our SystemOutAppender as an EventHandler OSGi service:

package org.apache.karaf.decanter.sample.appender.systemout;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;
import org.osgi.framework.Constants;
import org.osgi.framework.ServiceRegistration;
import org.osgi.service.event.EventConstants;
import org.osgi.service.event.EventHandler;
import java.util.HashMap;
import java.util.Dictionary;

public class Activator implements BundleActivator {

  private ServiceRegistration registration;

  public void start(BundleContext bundleContext) {
    SystemOutAppender appender = new SystemOutAppender();
    Dictionary<String, String> properties = new Hashtable<>();
    properties.put(EventConstants.EVENT_TOPIC, "decanter/collect/*");
    registration =  bundleContext.registerService(EventHandler.class, appender, properties);
  }

  public void stop(BundleContext bundleContext) {
    if (registration != null) registration.unregister();
  }

}

You can see that our SystemOutAppender will listen on any decanter/collect/* topics.

We can now package our appender bundle using the following Maven pom.xml:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">)

    <modelVersion>4.0.0</modelVersion>

    <groupId>org.apache.karaf.decanter.sample.appender</groupId>
    <artifactId>org.apache.karaf.decanter.sample.appender.systemout</artifactId>
    <version>1.1.0-SNAPSHOT</version>
    <packaging>bundle</packaging>
    <name>Apache Karaf :: Decanter :: Sample :: Appender :: SystemOut</name>

    <dependencies>

        <!-- OSGi -->
        <dependency>
            <groupId>org.osgi</groupId>
            <artifactId>org.osgi.core</artifactId>
            <version>4.3.1</version>
        </dependency>
        <dependency>
            <groupId>org.osgi</groupId>
            <artifactId>org.osgi.compendium</artifactId>
            <version>4.3.1</version>
        </dependency>


    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.felix</groupId>
                <artifactId>maven-bundle-plugin</artifactId>
                <version>2.4.0</version>
                <inherited>true</inherited>
                <extensions>true</extensions>
                <configuration>
                    <instructions>
                        <Bundle-SymbolicName>${project.artifactId}</Bundle-SymbolicName>
                        <Bundle-Version>${project.version}</Bundle-Version>
                        <Bundle-Activator>org.apache.karaf.decanter.sample.appender.systemout.Activator</Bundle-Activator>
                        <Import-Package>
                            *
                        </Import-Package>
                    </instructions>
                </configuration>
            </plugin>
        </plugins>
    </build>

</project>

Once built, you can enable this appender by deploying the bundle in Karaf (using the deploy folder or the bundle:install command).

2.4. Custom SLA Alerter

A Decanter SLA Alerter is basically a special kind of appender.

It’s an OSGi EventAdmin EventHandler: it’s listening of decanter/alert/* EventAdmin topics, and receives the alerting data coming from the SLA checker.

To enable a new Decanter Alerter, you just have to register an EventHandler OSGi service, like we do for an appender.

For instance, if you want to create a very simple SystemOutAlerter that displays the alert (coming from the SLA checker) to System.out, you can create the following SystemOutAlerter class implementing EventHandler interface:

package org.apache.karaf.decanter.sample.alerter.systemout;

import org.osgi.service.event.Event;
import org.osgi.service.event.EventHandler;

import java.util.HashMap;

public class SystemOutAlerter implements EventHandler {

    @Override
    public void handleEvent(Event event) {
        for (String name : event.getPropertyNames()) {
            System.err.println(name + ":" + event.getProperty(name));
        }
    }

}

Now, we create a BundleActivator that register our SystemOutAppender as an EventHandler OSGi service:

package org.apache.karaf.decanter.sample.alerter.systemout;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;
import org.osgi.framework.Constants;
import org.osgi.framework.ServiceRegistration;
import org.osgi.service.event.EventConstants;
import org.osgi.service.event.EventHandler;
import java.util.HashMap;
import java.util.Dictionary;

public class Activator implements BundleActivator {

  private ServiceRegistration registration;

  public void start(BundleContext bundleContext) {
    SystemOutAlerter alerter = new SystemOutAlerter();
    Dictionary<String, String> properties = new Hashtable<>();
    properties.put(EventConstants.EVENT_TOPIC, "decanter/alert/*");
    registration =  bundleContext.registerService(EventHandler.class, alerter, properties);
  }

  public void stop(BundleContext bundleContext) {
    if (registration != null) registration.unregister();
  }

}

You can see that our SystemOutAlerter will listen on any decanter/alert/* topics.

We can now package our alerter bundle using the following Maven pom.xml:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">)

    <modelVersion>4.0.0</modelVersion>

    <groupId>org.apache.karaf.decanter.sample.alerter</groupId>
    <artifactId>org.apache.karaf.decanter.sample.alerter.systemout</artifactId>
    <version>1.0.0-SNAPSHOT</version>
    <packaging>bundle</packaging>
    <name>Apache Karaf :: Decanter :: Sample :: Alerter :: SystemOut</name>

    <dependencies>

        <!-- OSGi -->
        <dependency>
            <groupId>org.osgi</groupId>
            <artifactId>org.osgi.core</artifactId>
            <version>4.3.1</version>
        </dependency>
        <dependency>
            <groupId>org.osgi</groupId>
            <artifactId>org.osgi.compendium</artifactId>
            <version>4.3.1</version>
        </dependency>


    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.felix</groupId>
                <artifactId>maven-bundle-plugin</artifactId>
                <version>2.4.0</version>
                <inherited>true</inherited>
                <extensions>true</extensions>
                <configuration>
                    <instructions>
                        <Bundle-SymbolicName>${project.artifactId}</Bundle-SymbolicName>
                        <Bundle-Version>${project.version}</Bundle-Version>
                        <Bundle-Activator>org.apache.karaf.decanter.sample.alerter.systemout.Activator</Bundle-Activator>
                        <Import-Package>
                            *
                        </Import-Package>
                    </instructions>
                </configuration>
            </plugin>
        </plugins>
    </build>

</project>

Once built, you can enable this alerter by deploying the bundle in Karaf (using the deploy folder or the bundle:install command).